
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 05. October 2020

Markus Püschel, David Steurer

Johannes Lengler, Gleb Novikov, Chris Wendler, Ulysse Schaller

Algorithms & Data Structures Exercise sheet 3 HS 20

Exercise Class (Room & TA):

Submi�ed by:

Peer Feedback by:

Points:

�e solutions for this sheet are submi�ed at the beginning of the exercise class on October 12th.

Exercises that are marked by
∗
are challenge exercises. �ey do not count towards bonus points.

Exercise 3.1 Counting Operations in Loops (1 Point).

For the following code fragments count how many times the function f is called. Report the number of

calls as nested sum, and then simplify your expression inO-notation (as tight and simpli�ed as possible)

and prove your result. For example, in the code fragment

Algorithm 1
for k = 1, . . . , 100 do

f()

the function f is called

∑100
k=1 1 = 100 times, so the amount of calls is in O(1).

Hint: Note that you are required to prove two parts: that theO-expression is correct, and that it is tight.

�is corresponds to an upper and a lower bound, respectively.

a) Consider the snippet:

Algorithm 2
for j = 1, . . . , n do

for k = 1, . . . , j do
f()

Solution: f is called

n∑
j=1

j∑
k=1

1 =

n∑
j=1

j ≤
n∑

j=1

n ≤ n2 ≤ O(n2)



times. Notice that

n∑
j=1

j∑
k=1

1 =
n∑

j=1

j ≥
n∑

j=dn/2e

n/2 ≥ n2/4,

so actually we have

n∑
j=1

j∑
k=1

1 = Θ(n2).

b) Consider the snippet:

Algorithm 3
for j = 1, . . . , n do

for l = 1, . . . , 100 do
for k = j, . . . , n do

f()
f()
f()

Solution: f is called

n∑
j=1

100∑
l=1

n∑
k=j

3 =
n∑

j=1

100 · (n− j + 1) · 3 ≤ 300
n∑

j=1

n ≤ 300n2 ≤ O(n2)

times. Notice that

n∑
j=1

100∑
l=1

n∑
k=j

3 ≥
n∑

j=1

(n− j + 1) ≥
dn/2e∑
j=1

(n− j + 1) ≥
dn/2e∑
j=1

n/2 ≥ n2/4,

so actually we have

n∑
j=1

100∑
l=1

n∑
k=j

3 = Θ(n2).

c) Consider the snippet:

Algorithm 4
for k = 1, . . . , n do

f()

for j = 1, . . . , n do
for k = j, . . . , n do

f()
for l = 1, . . . , j do

for m = 1, . . . , j do
f()

2



Solution: f is called

n∑
k=1

1 +
n∑

j=1

n∑
k=j

(1 +

j∑
l=1

j∑
m=1

1) = n +

n∑
j=1

n∑
k=j

(1 + j2) = n +

n∑
j=1

(n− j + 1)(1 + j2)

≤ n +

n∑
j=1

n(n2 + 1) ≤ n + n4 + n2 ≤ O(n4)

times. Notice that

n∑
k=1

1 +

n∑
j=1

n∑
k=j

(1 +

j∑
l=1

j∑
m=1

1) ≥
n∑

j=1

(n− j + 1)j2 ≥
d3n/4e∑
j=dn/4e

(n− j + 1)j2

≥
d3n/4e∑
j=dn/4e

n/4 · (n/4)2 ≥ n4/256,

so actually we have

n∑
k=1

1 +

n∑
j=1

n∑
k=j

(1 +

j∑
l=1

j∑
m=1

1) = Θ(n4).

d) Consider the snippet:

Algorithm 5
for j = 1, . . . , n do

k ← 1
while k ≤ j do

f()
k ← 42 · k

Solution: f is called

n∑
j=1

blog42 jc∑
l=0

1 =
n∑

j=1

(blog42 jc+ 1) ≤ n log42 n + n ≤ O(n log n)

times.�is can be seen by de�ning l = log42 k. Next we use that for n ≥ 422, we have log42(n/2) =
log42(n) − log42(2) ≥ log42 n − 1 ≥ (log42 n)/2, where the last step follows from log42 n ≥ 2.
�erefore,

n∑
j=1

blog42 jc∑
l=0

1 =

n∑
j=1

(blog42 jc+ 1) ≥
n∑

j=dn/2e

log42(n/2) ≥ n log42(n/2)

2
≥ n log42 n

4
=

n log n

4 log 42
,

so actually we have

n∑
j=1

blog42 jc∑
l=0

1 = Θ(n log n).

∗
e) Consider the snippet:

3



Algorithm 6
for j = 1, . . . , n do

for k = 1, . . . , j do
for ` = 1, . . . , k do

for m = `, . . . , n do
f()

Solution: f is called

n∑
j=1

j∑
k=1

k∑
l=1

n∑
m=l

1 ≤
n∑

j=1

n∑
k=1

n∑
l=1

n∑
m=1

1 = n4 ≤ O(n4)

times. Notice that for n ≥ 4

n∑
j=1

j∑
k=1

k∑
l=1

n∑
m=l

1 ≥
n∑

j=d 2n
3
e

d 2n
3
e∑

k=dn
3
e

dn
3
e∑

l=1

n∑
m=dn

3
e

1 ≥ (
n

3
− 1)4 ≥ n4

124
,

so actually we have

n∑
j=1

j∑
k=1

k∑
l=1

n∑
m=l

1 = Θ(n4).

Exercise 3.2 Solving Recurrences (1 Point).

In this exercise, we describe a technique that can be used to solve recurrences, i.e. this allows to derive

a closed form formula from a recurrence relation. Consider for example the recurrence relation

T (n) ≤ 2T (n− 1) + 1, ∀n ≥ 1. (1)

Given T (0) = 3, we want to �nd an upper bound for T (n) that depends only on n (and not on T (n−1)).
�e idea is to repeatedly apply inequality (1) to get upper bounds in terms of T (n− 1), then T (n− 2),
and so on, at each step ge�ing closer to T (0) (which is known). In this case, expanding the recurrence

relation a few times yields

T (n) ≤ 2T (n− 1) + 1

≤ 2(2T (n− 2) + 1) + 1 = 4T (n− 2) + 3

≤ 4(2T (n− 3) + 1) + 3 = 8T (n− 3) + 7

≤ 8(2T (n− 4) + 1) + 7 = 16T (n− 4) + 15

.

.

.

We see an emerging pa�ern of the form

T (n) ≤ 2kT (n− k) + 2k − 1. (2)

Plugging k = n in (2), we get the conjecture

T (n) ≤ 2nT (0) + 2n − 1 = 4 · 2n − 1. (3)

Now that we have a guess, we can then use the base case T (0) = 3 together with the recurrence relation
(1) to actually prove (3) by induction.

4



a) Apply the same technique to �nd closed form formula for the following recurrence relation, and

prove by induction that your claimed formula is correct:

T (0) = 3, T (n) = 3T (n− 1)− 2 ∀n ≥ 1 .

Solution: Expanding the recurrence relation yields

T (n) = 3T (n− 1)− 2

= 3(3T (n− 2)− 2)− 2 = 9T (n− 2)− 8

= 9(3T (n− 3)− 2)− 8 = 27T (n− 3)− 26

.

.

.

�e emerging pa�ern is

T (n) = 3kT (n− k)− 3k + 1,

and plugging in k = n yields

T (n) = 3nT (0)− 3n + 1 = 2 · 3n + 1. (4)

Let us now prove (4) by induction on n. �e base case holds since 2 · 30 + 1 = 3 = T (0). Let n ≥ 1
and assume that (4) holds for n − 1, i.e. that T (n − 1) = 2 · 3n−1 + 1. �en using the recurrence

relation we get

T (n) = 3T (n− 1)− 2 = 3(2 · 3n−1 + 1)− 2 = 2 · 3n + 1,

which shows that (4) holds for n and concludes the proof.

b) Let

T (1) = 1, T (n) ≤ 4T (n/2) + 3 log2 n ∀n = 2m,m ≥ 1 .

Apply the technique described above to prove that T (n) ≤ O(n2 log n) (assuming n = 2m,m ≥ 1).

Hint: Use the fact that log2(n/2k) ≤ log2 n for all k ∈ N to simplify the formulas when you expand
the recurrence relation. Your proof should use induction onm.

Solution: Expanding the recurrence relation yields

T (n) ≤ 4T (n/2) + 3 log2 n

≤ 4(4T (n/4) + 3 log2(n/2)) + 3 log2 n ≤ 16T (n/4) + 15 log2 n

≤ 16(4T (n/8) + 3 log2(n/4)) + 15 log2 n ≤ 64T (n/8) + 63 log2 n

.

.

.

�e emerging pa�ern is

T (n) ≤ 4kT (n/2k) + (4k − 1) log2 n,

and plugging in k = log2 n yields

T (n) ≤ 4log2 nT (1) + (4log2 n − 1) log2 n = n2 + (n2 − 1) log2 n = n2(log2 n + 1)− log2 n. (5)

5



Let us now prove (5) for n = 2m by induction on m. �e base case holds since 12(log2 1 + 1) −
log2 1 = 1 = T (1). Let n ≥ 2 and assume that (5) holds for n/2, i.e. that

T (n/2) ≤ (n/2)2(log2(n/2) + 1)− log2(n/2).

�en, using the recurrence relation and the fact that log2(n/2) = log2 n− 1, we get

T (n) ≤ 4T (n/2) + 3 log2 n

≤ 4((n/2)2(log2(n/2) + 1)− log2(n/2)) + 3 log2 n

= n2 log2 n− 4(log2 n− 1) + 3 log2 n

= n2 log2 +4− log2 n

≤ n2(log2 n + 1)− log2 n,

which shows that (5) holds for n and concludes the inductive proof that

T (n) ≤ n2(log2 n + 1)− log2 n = n2 log2 n + n2 − log2 n.

�us, T (n) ≤ n2 log2 n+n2
and since n2 log2 n ≤ O(n2 log n) and n2 ≤ O(n2 log n), we conclude

that T (n) ≤ O(n2 log n).

Exercise 3.3 Maximum-Subarray-Di�erence (1 Point).

Consider the following problem: Given an array A ∈ Zn
compute its maximum subarray di�erence,

i.e., compute

4∗ = max
1≤a≤b<c≤n

b∑
i=a

Ai −
c∑

j=b+1

Aj . (6)

a) Provide an O(n) algorithm.

b) Justify your answer:

i) Prove the correctness of your algorithm.

ii) Prove that the asymptotic runtime of your algorithm is O(n).

Solution:We can rewrite4∗ in the following way

4∗ = max
1≤b<n

max
1≤a≤b

b∑
i=a

Ai + max
b<c≤n

− c∑
j=b+1

Aj

 (7)

becausewhen b is �xed max
1≤a≤b<c≤n

∑b
i=aAi−

∑c
j=b+1Aj = max

1≤a≤b

∑b
i=aAi+ max

b<c≤n

(
−
∑c

j=b+1Aj

)
.

�us, let Pb := max
1≤a≤b

∑b
i=aAi and let Mb := max

b<c≤n
−
∑c

j=b+1Aj . We utilize the facts that all Pb’s

and Mb’s can be computed in linear time using

P0 = 0 and Pb = max(Ab, Pb−1 + Ab) (8)

and

Mn = 0 and Mb = max(−Ab+1,Mb+1 −Ab+1). (9)

Once we have computed the Pb and Mb, we can compute the maximum in linear time as 4∗ =
max1≤b<n Pb + Mb. To clarify the computation, consider the following pseudocode.

6



Algorithm 7MaximumSubarrayDi�erence(A)

P0 = 0
Mn = 0
for b ∈ {1, . . . , n} do

Pb ← max(Ab, Pb−1 + Ab)
Mn−b ← max(−An−b+1,Mn−b+1 −An−b+1)

4← 0
for b ∈ {1, . . . , n− 1} do

if 4 < Pb + Mb then
4← Pb + Mb

return4

Correctness:�e correctness of our algorithm only depends on the correctness of our recurrences

for Pb andMb. We show the correctness of the recurrence for Pb, i.e., that Pb = max
1≤a≤b

∑b
i=aAi, by

mathematical induction, the recurrence forMb can be proved analogously.

Base case b = 1: Pb = max(A1, 0 + A1) = A1 = max
1≤a≤1

∑1
i=aAi.

Induction hypothesis: For some k ≥ 1 we have Pk = max1≤a≤k
∑k

i=aAi.

Induction step k → k + 1: Pk+1 = max(Ak+1, Pk+Ak+1).�us, by de�nition of the maximum

Pk+1 = Pk + Ak+1 if Pk is positive and Ak+1 else. By the induction hypothesis we have

Pk+1 = max
1≤a≤k+1

∑k+1
i=a Ai =

{
Pk + Ak+1 if Pk > 0,

Ak+1 else.

Runtime: Both for-loops perform n iterations with a constant amount of operations per iteration.

�us, the proposed algorithm is in O(n).

Exercise 3.4∗ Maximum-Submatrix-Sum.

Provide anO(n3) time algorithm which given a matrixM ∈ Zn×n
outputs its maximal submatrix sum

S. �at is, if M has some non-negative entries,

S = max
1≤a≤b≤n
1≤c≤d≤n

b∑
i=a

d∑
j=c

Mij ,

and if all entries ofM are negative, S = 0.

Justify your answer, i.e. prove that the asymptotic runtime of your algorithm is O(n3).

Hint: You may want to start by considering the cumulative column sums

Cij =

i∑
k=1

Mkj .

How can you compute all Cij e�ciently? A�er you have computed Cij , how you can use this to �nd S?

Solution:We start with the computation of a matrix of cumulative column sums

Cij =

i∑
k=0

Mkj .

7



�en for each pair of rows a and b, a ≤ b, we compute an array of column sums inside the stripe

between a and b, that is

Aj =

b∑
i=a

Mij = Cbj − Ca−1j , 0 ≤ j < n.

(If a = 0, Aj = Cbj).

�enwe use a procedureMaxSubarraySum(A)which returnsmaximal subarray sum ofA in timeO(n).
Maximal subarray sum of A is equal to

P (a, b) = max
0≤c≤d<n

b∑
i=a

d∑
j=c

Mij .

To �nd maximal submatrix sum, we maximize P (a, b). For more details, see the pseudocode below.

Algorithm 8 Computation of max submatrix sum

procedureMaxSubmatrixSum(M )

C ←M
for 1 ≤ i < n do

for 0 ≤ j < n do
Cij ← Ci−1j + Mij

S ← 0
for 0 ≤ a < n do

for a ≤ b < n do
for 0 ≤ j < n do

if a = 0 then
Aj ← Cbj

else
Aj ← Cbj − Ca−1j

S ← max{S,MaxSubarraySum(A)}
return S

Computing cumulative column sum matrix takes time O(n2).
�ere areO(n2) pairs of rows (a, b) and for each pair we performO(n) operations:O(n) operations to
compute the array of column sums,O(n) operations to �ndmaximal subarray sum andO(1) operations
to compare maximal subarray sum with the current maximal value.

Hence the total number of operations is O(n3).

8


