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Exercise 3.1 Counting Operations in Loops (1 Point).

For the following code fragments count how many times the function f is called. Report the number of

calls as nested sum, and then simplify your expression inO-notation (as tight and simpli�ed as possible)

and prove your result. For example, in the code fragment

Algorithm 1
for k = 1, . . . , 100 do

f()

the function f is called

∑100
k=1 1 = 100 times, so the amount of calls is in O(1).

Hint: Note that you are required to prove two parts: that theO-expression is correct, and that it is tight.

�is corresponds to an upper and a lower bound, respectively.

a) Consider the snippet:

Algorithm 2
for j = 1, . . . , n do

for k = 1, . . . , j do
f()

Solution: f is called

n∑
j=1

j∑
k=1

1 =

n∑
j=1

j ≤
n∑

j=1

n ≤ n2 ≤ O(n2)



times. Notice that

n∑
j=1

j∑
k=1

1 =
n∑

j=1

j ≥
n∑

j=dn/2e

n/2 ≥ n2/4,

so actually we have

n∑
j=1

j∑
k=1

1 = Θ(n2).

b) Consider the snippet:

Algorithm 3
for j = 1, . . . , n do

for l = 1, . . . , 100 do
for k = j, . . . , n do

f()
f()
f()

Solution: f is called

n∑
j=1

100∑
l=1

n∑
k=j

3 =
n∑

j=1

100 · (n− j + 1) · 3 ≤ 300
n∑

j=1

n ≤ 300n2 ≤ O(n2)

times. Notice that

n∑
j=1

100∑
l=1

n∑
k=j

3 ≥
n∑

j=1

(n− j + 1) ≥
dn/2e∑
j=1

(n− j + 1) ≥
dn/2e∑
j=1

n/2 ≥ n2/4,

so actually we have

n∑
j=1

100∑
l=1

n∑
k=j

3 = Θ(n2).

c) Consider the snippet:

Algorithm 4
for k = 1, . . . , n do

f()

for j = 1, . . . , n do
for k = j, . . . , n do

f()
for l = 1, . . . , j do

for m = 1, . . . , j do
f()
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Solution: f is called

n∑
k=1

1 +
n∑

j=1

n∑
k=j

(1 +

j∑
l=1

j∑
m=1

1) = n +

n∑
j=1

n∑
k=j

(1 + j2) = n +

n∑
j=1

(n− j + 1)(1 + j2)

≤ n +

n∑
j=1

n(n2 + 1) ≤ n + n4 + n2 ≤ O(n4)

times. Notice that

n∑
k=1

1 +

n∑
j=1

n∑
k=j

(1 +

j∑
l=1

j∑
m=1

1) ≥
n∑

j=1

(n− j + 1)j2 ≥
d3n/4e∑
j=dn/4e

(n− j + 1)j2

≥
d3n/4e∑
j=dn/4e

n/4 · (n/4)2 ≥ n4/256,

so actually we have

n∑
k=1

1 +

n∑
j=1

n∑
k=j

(1 +

j∑
l=1

j∑
m=1

1) = Θ(n4).

d) Consider the snippet:

Algorithm 5
for j = 1, . . . , n do

k ← 1
while k ≤ j do

f()
k ← 42 · k

Solution: f is called

n∑
j=1

blog42 jc∑
l=0

1 =
n∑

j=1

(blog42 jc+ 1) ≤ n log42 n + n ≤ O(n log n)

times.�is can be seen by de�ning l = log42 k. Next we use that for n ≥ 422, we have log42(n/2) =
log42(n) − log42(2) ≥ log42 n − 1 ≥ (log42 n)/2, where the last step follows from log42 n ≥ 2.
�erefore,

n∑
j=1

blog42 jc∑
l=0

1 =

n∑
j=1

(blog42 jc+ 1) ≥
n∑

j=dn/2e

log42(n/2) ≥ n log42(n/2)

2
≥ n log42 n

4
=

n log n

4 log 42
,

so actually we have

n∑
j=1

blog42 jc∑
l=0

1 = Θ(n log n).

∗
e) Consider the snippet:
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Algorithm 6
for j = 1, . . . , n do

for k = 1, . . . , j do
for ` = 1, . . . , k do

for m = `, . . . , n do
f()

Solution: f is called

n∑
j=1

j∑
k=1

k∑
l=1

n∑
m=l

1 ≤
n∑

j=1

n∑
k=1

n∑
l=1

n∑
m=1

1 = n4 ≤ O(n4)

times. Notice that for n ≥ 4

n∑
j=1

j∑
k=1

k∑
l=1

n∑
m=l

1 ≥
n∑

j=d 2n
3
e

d 2n
3
e∑

k=dn
3
e

dn
3
e∑

l=1

n∑
m=dn

3
e

1 ≥ (
n

3
− 1)4 ≥ n4

124
,

so actually we have

n∑
j=1

j∑
k=1

k∑
l=1

n∑
m=l

1 = Θ(n4).

Exercise 3.2 Solving Recurrences (1 Point).

In this exercise, we describe a technique that can be used to solve recurrences, i.e. this allows to derive

a closed form formula from a recurrence relation. Consider for example the recurrence relation

T (n) ≤ 2T (n− 1) + 1, ∀n ≥ 1. (1)

Given T (0) = 3, we want to �nd an upper bound for T (n) that depends only on n (and not on T (n−1)).
�e idea is to repeatedly apply inequality (1) to get upper bounds in terms of T (n− 1), then T (n− 2),
and so on, at each step ge�ing closer to T (0) (which is known). In this case, expanding the recurrence

relation a few times yields

T (n) ≤ 2T (n− 1) + 1

≤ 2(2T (n− 2) + 1) + 1 = 4T (n− 2) + 3

≤ 4(2T (n− 3) + 1) + 3 = 8T (n− 3) + 7

≤ 8(2T (n− 4) + 1) + 7 = 16T (n− 4) + 15

.

.

.

We see an emerging pa�ern of the form

T (n) ≤ 2kT (n− k) + 2k − 1. (2)

Plugging k = n in (2), we get the conjecture

T (n) ≤ 2nT (0) + 2n − 1 = 4 · 2n − 1. (3)

Now that we have a guess, we can then use the base case T (0) = 3 together with the recurrence relation
(1) to actually prove (3) by induction.
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a) Apply the same technique to �nd closed form formula for the following recurrence relation, and

prove by induction that your claimed formula is correct:

T (0) = 3, T (n) = 3T (n− 1)− 2 ∀n ≥ 1 .

Solution: Expanding the recurrence relation yields

T (n) = 3T (n− 1)− 2

= 3(3T (n− 2)− 2)− 2 = 9T (n− 2)− 8

= 9(3T (n− 3)− 2)− 8 = 27T (n− 3)− 26

.

.

.

�e emerging pa�ern is

T (n) = 3kT (n− k)− 3k + 1,

and plugging in k = n yields

T (n) = 3nT (0)− 3n + 1 = 2 · 3n + 1. (4)

Let us now prove (4) by induction on n. �e base case holds since 2 · 30 + 1 = 3 = T (0). Let n ≥ 1
and assume that (4) holds for n − 1, i.e. that T (n − 1) = 2 · 3n−1 + 1. �en using the recurrence

relation we get

T (n) = 3T (n− 1)− 2 = 3(2 · 3n−1 + 1)− 2 = 2 · 3n + 1,

which shows that (4) holds for n and concludes the proof.

b) Let

T (1) = 1, T (n) ≤ 4T (n/2) + 3 log2 n ∀n = 2m,m ≥ 1 .

Apply the technique described above to prove that T (n) ≤ O(n2 log n) (assuming n = 2m,m ≥ 1).

Hint: Use the fact that log2(n/2k) ≤ log2 n for all k ∈ N to simplify the formulas when you expand
the recurrence relation. Your proof should use induction onm.

Solution: Expanding the recurrence relation yields

T (n) ≤ 4T (n/2) + 3 log2 n

≤ 4(4T (n/4) + 3 log2(n/2)) + 3 log2 n ≤ 16T (n/4) + 15 log2 n

≤ 16(4T (n/8) + 3 log2(n/4)) + 15 log2 n ≤ 64T (n/8) + 63 log2 n

.

.

.

�e emerging pa�ern is

T (n) ≤ 4kT (n/2k) + (4k − 1) log2 n,

and plugging in k = log2 n yields

T (n) ≤ 4log2 nT (1) + (4log2 n − 1) log2 n = n2 + (n2 − 1) log2 n = n2(log2 n + 1)− log2 n. (5)
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Let us now prove (5) for n = 2m by induction on m. �e base case holds since 12(log2 1 + 1) −
log2 1 = 1 = T (1). Let n ≥ 2 and assume that (5) holds for n/2, i.e. that

T (n/2) ≤ (n/2)2(log2(n/2) + 1)− log2(n/2).

�en, using the recurrence relation and the fact that log2(n/2) = log2 n− 1, we get

T (n) ≤ 4T (n/2) + 3 log2 n

≤ 4((n/2)2(log2(n/2) + 1)− log2(n/2)) + 3 log2 n

= n2 log2 n− 4(log2 n− 1) + 3 log2 n

= n2 log2 +4− log2 n

≤ n2(log2 n + 1)− log2 n,

which shows that (5) holds for n and concludes the inductive proof that

T (n) ≤ n2(log2 n + 1)− log2 n = n2 log2 n + n2 − log2 n.

�us, T (n) ≤ n2 log2 n+n2
and since n2 log2 n ≤ O(n2 log n) and n2 ≤ O(n2 log n), we conclude

that T (n) ≤ O(n2 log n).

Exercise 3.3 Maximum-Subarray-Di�erence (1 Point).

Consider the following problem: Given an array A ∈ Zn
compute its maximum subarray di�erence,

i.e., compute

4∗ = max
1≤a≤b<c≤n

b∑
i=a

Ai −
c∑

j=b+1

Aj . (6)

a) Provide an O(n) algorithm.

b) Justify your answer:

i) Prove the correctness of your algorithm.

ii) Prove that the asymptotic runtime of your algorithm is O(n).

Solution:We can rewrite4∗ in the following way

4∗ = max
1≤b<n

max
1≤a≤b

b∑
i=a

Ai + max
b<c≤n

− c∑
j=b+1

Aj

 (7)

becausewhen b is �xed max
1≤a≤b<c≤n

∑b
i=aAi−

∑c
j=b+1Aj = max

1≤a≤b

∑b
i=aAi+ max

b<c≤n

(
−
∑c

j=b+1Aj

)
.

�us, let Pb := max
1≤a≤b

∑b
i=aAi and let Mb := max

b<c≤n
−
∑c

j=b+1Aj . We utilize the facts that all Pb’s

and Mb’s can be computed in linear time using

P0 = 0 and Pb = max(Ab, Pb−1 + Ab) (8)

and

Mn = 0 and Mb = max(−Ab+1,Mb+1 −Ab+1). (9)

Once we have computed the Pb and Mb, we can compute the maximum in linear time as 4∗ =
max1≤b<n Pb + Mb. To clarify the computation, consider the following pseudocode.
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Algorithm 7MaximumSubarrayDi�erence(A)

P0 = 0
Mn = 0
for b ∈ {1, . . . , n} do

Pb ← max(Ab, Pb−1 + Ab)
Mn−b ← max(−An−b+1,Mn−b+1 −An−b+1)

4← 0
for b ∈ {1, . . . , n− 1} do

if 4 < Pb + Mb then
4← Pb + Mb

return4

Correctness:�e correctness of our algorithm only depends on the correctness of our recurrences

for Pb andMb. We show the correctness of the recurrence for Pb, i.e., that Pb = max
1≤a≤b

∑b
i=aAi, by

mathematical induction, the recurrence forMb can be proved analogously.

Base case b = 1: Pb = max(A1, 0 + A1) = A1 = max
1≤a≤1

∑1
i=aAi.

Induction hypothesis: For some k ≥ 1 we have Pk = max1≤a≤k
∑k

i=aAi.

Induction step k → k + 1: Pk+1 = max(Ak+1, Pk+Ak+1).�us, by de�nition of the maximum

Pk+1 = Pk + Ak+1 if Pk is positive and Ak+1 else. By the induction hypothesis we have

Pk+1 = max
1≤a≤k+1

∑k+1
i=a Ai =

{
Pk + Ak+1 if Pk > 0,

Ak+1 else.

Runtime: Both for-loops perform n iterations with a constant amount of operations per iteration.

�us, the proposed algorithm is in O(n).

Exercise 3.4∗ Maximum-Submatrix-Sum.

Provide anO(n3) time algorithm which given a matrixM ∈ Zn×n
outputs its maximal submatrix sum

S. �at is, if M has some non-negative entries,

S = max
1≤a≤b≤n
1≤c≤d≤n

b∑
i=a

d∑
j=c

Mij ,

and if all entries ofM are negative, S = 0.

Justify your answer, i.e. prove that the asymptotic runtime of your algorithm is O(n3).

Hint: You may want to start by considering the cumulative column sums

Cij =

i∑
k=1

Mkj .

How can you compute all Cij e�ciently? A�er you have computed Cij , how you can use this to �nd S?

Solution:We start with the computation of a matrix of cumulative column sums

Cij =

i∑
k=0

Mkj .
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�en for each pair of rows a and b, a ≤ b, we compute an array of column sums inside the stripe

between a and b, that is

Aj =

b∑
i=a

Mij = Cbj − Ca−1j , 0 ≤ j < n.

(If a = 0, Aj = Cbj).

�enwe use a procedureMaxSubarraySum(A)which returnsmaximal subarray sum ofA in timeO(n).
Maximal subarray sum of A is equal to

P (a, b) = max
0≤c≤d<n

b∑
i=a

d∑
j=c

Mij .

To �nd maximal submatrix sum, we maximize P (a, b). For more details, see the pseudocode below.

Algorithm 8 Computation of max submatrix sum

procedureMaxSubmatrixSum(M )

C ←M
for 1 ≤ i < n do

for 0 ≤ j < n do
Cij ← Ci−1j + Mij

S ← 0
for 0 ≤ a < n do

for a ≤ b < n do
for 0 ≤ j < n do

if a = 0 then
Aj ← Cbj

else
Aj ← Cbj − Ca−1j

S ← max{S,MaxSubarraySum(A)}
return S

Computing cumulative column sum matrix takes time O(n2).
�ere areO(n2) pairs of rows (a, b) and for each pair we performO(n) operations:O(n) operations to
compute the array of column sums,O(n) operations to �ndmaximal subarray sum andO(1) operations
to compare maximal subarray sum with the current maximal value.

Hence the total number of operations is O(n3).

8


